
صفحهى افقى، R، را بر حسب متغيرهاى θ ، و و بهدست آوريد．
：اسخخ：
ميزان مسافت ططشده در صفحهى افقى، R، بهعنوان متغير تابع و سرعت اوليهى، V، زاويهى برتاب، O، و شتاب ثقل، g، بهعنوان متغيرهاى مستقل درنظر گرفته مىشوند．بنابراين، رابطهى زير بهدست مى آيد：

$$
R=f(V, \theta, g)
$$

با استفاده از روش فهرسـتنويسى［بخش（1－Y－9（1）］، متغير تابع بهصورت حاصـلضرب تـوانى متغيرهاى مستقل بهصورت زير بيان مىشود：

$$
\begin{equation*}
R=f\left[(V)^{a}(\theta)^{b}(g)^{c}\right] \tag{1}
\end{equation*}
$$

با استفاده از جدول（1－1）فصل اول، ابعاد متغيرهاى مختلف در رابطهى بالا بهصورت زير است：

$$
R \doteq L \quad ; \quad V \doteq L T^{-1} \quad ; \quad \theta \doteq F^{0} L^{0} T^{0} \quad ; \quad g \doteq L T^{-2}
$$

جون متغير θ بیبعد است، خود جزو يكى از اعداد بیبعد است．لذا، اين متغير از رابطهى（1）حذف مى انشود تا در مرحلهى نهايى به آن افزوده شود．با جايگزينى ابعاد اين متغيرها، رابطهى（1）با استفاده از امل همگنى ابعاد بهصورت زير درمى آيل：

$$
(L) \doteq\left(L T^{-1}\right)^{a}\left(L T^{-2}\right)^{c} ;\left\{\begin{array}{l}
L: 1=a+c \\
T: 0=-a-2 c
\end{array} \quad ; \quad c=-1, a=2 \quad ; \quad R=f\left[(V)^{2} \theta(g)^{-1}\right]=f\left(\frac{V^{2} \theta}{g}\right)\right.
$$

 c

$$
\begin{equation*}
P=f(D, V, c, \omega, \rho, \mu) \quad ; \quad P=f\left(D^{a} V^{b} c^{c} \omega^{d} \rho^{c} \mu^{f}\right) \tag{1}
\end{equation*}
$$

با استفاده از جلول（1－1）فصل اول، ابعاد ترمهاى مختلف در رابطهى（1）بيصورت زير است：

$$
\begin{aligned}
& P \doteq F L T^{-1} \quad ; \quad D \doteq L \quad ; \quad V \doteq c \doteq L T^{-1} \quad ; \quad \omega \doteq T^{-1} \quad ; \quad \rho \doteq F L^{-4} T^{2} \quad ; \quad \mu \doteq F L^{-2} T \\
& F L T^{-1} \doteq(L)^{a}\left(L T^{-1}\right)^{b}\left(L T^{-1}\right)^{c}\left(T^{-1}\right)^{d}\left(F L^{-4} T^{2}\right)^{e}\left(F L^{-2} T\right)^{f} \\
& \left\{\begin{array}{l}
F: 1=e+f \\
L: 1=a+b+c-4 e-2 f \\
T:-1=-b-c-d+2 e+f
\end{array} ; \quad\left\{\begin{array}{l}
a=2+d-f \\
b=3-d-c-f \\
e=1-f
\end{array} \quad ; \quad P=f\left[D^{(2+d-f)} V^{(3-d-c-f)} c^{c} \omega^{d} \rho^{(1-f)} \mu^{f}\right]\right.\right. \\
& P=\rho V^{3} D^{2}\left\{f\left[\left(\frac{\rho V d}{\mu}\right)^{-f}\left(\frac{D \omega}{V}\right)^{d}\left(\frac{V}{c}\right)^{-c}\right]\right\} \quad ; \quad \frac{P}{\rho V^{3} D^{2}}=f\left(\frac{\rho V d}{\mu}, \frac{D \omega}{V}, \frac{V}{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Q \doteq \text { L゙Tー } \quad d \doteq L \quad \Delta P=F \text { Er } \quad \rho \doteq F \text { L゙FT } \\
& a=\frac{k}{d} \frac{\Delta P}{\rho} \quad\left(L^{r} T-1\right)=\frac{1}{(L)} \frac{\left(F L^{-r}\right)}{\left(F L^{-6} T\right)}, L^{r} T-1=\frac{1}{L}\left(L^{r}\right)(F-r) \frac{1 F-4}{\neq L T-} \\
& G_{0} k d^{r} \frac{\Delta P}{\rho} \quad\left(L^{r} T-1\right) \doteq(L)^{r} \frac{\left(F-V^{-}\right)}{\left(F L_{T} \xi_{T}\right)}, L^{r} T_{T-1} \doteq(C)\left(L^{r} T-T\right) \neq L^{E_{T-K}}
\end{aligned}
$$

$$
f\left(\frac{V}{\omega D}, \frac{\rho \omega D^{\gamma}}{\mu}, \frac{C}{\omega D}\right)=0
$$

$$
\begin{aligned}
f\left(\frac{V}{\omega D}, \frac{\rho C D^{r}}{\mu}, \frac{C}{\omega D}\right) & =0 & \text { (r } & f\left(\frac{C}{V}, \frac{\rho C D}{\mu}, \frac{C}{\omega D}\right)=0 \\
f\left(\frac{V \mu}{\omega^{2} D^{3} \rho}, \frac{\rho V D}{\mu}, \frac{C}{\omega D}\right) & =0 & \text { (F } & f\left(\frac{V}{\omega D}, \frac{\rho C D}{\mu}, \frac{\rho V C}{\omega \mu}\right)=0
\end{aligned}
$$

: إسْخ
قزينهى (Y). در گزينهى (1) متغير اول از تقسيم متغير سوم بر متغير اول رابطهى داده شده بهدست آمله و لذا بى آبعد است. متغير دوم از

§- هـ新

از صورت مسأله و جدول (1-1) فصل اول، رابطهى بين متغيرهـا و مراحل حـفف ابعـاد اصلى بهصورت زير درمى آيــد [بخش (4-r-r)]: $\underbrace{\Delta p_{\ell}}_{F L^{-3}}=f(\underbrace{D}_{L}, \underbrace{\rho}_{F L^{-4} T^{2}}, \underbrace{\mu}_{F L^{-4} T^{2}}, \underbrace{V}_{L T^{-1}}) ; \quad F: \underbrace{\frac{\Delta p_{\ell}}{\rho}}_{L T^{-2}}=f_{1}(\underbrace{D}_{L}, \frac{\rho}{\rho}, \underbrace{\frac{\mu}{\rho}}_{L^{2} T^{-1}}, \underbrace{V}_{L T^{-1}})=f_{1}(\underbrace{D}_{L}, \underbrace{\frac{\mu}{\rho}}_{L^{2} T^{-1}}, \underbrace{V}_{L T^{-1}})$
$T: \underbrace{\frac{\Delta p_{\ell}}{\rho V^{2}}}_{L^{-1}}=f_{2}(\underbrace{D}_{L}, \underbrace{\frac{\mu}{\rho V}}_{L}, \frac{V}{V})=f_{2}(\underbrace{D}_{L}, \underbrace{\frac{\mu}{\rho V}}_{L}) ; \quad L: \frac{\Delta p_{\ell} D}{\rho V^{2}}=f_{3}\left(\frac{D}{D}, \frac{\mu}{\rho V D}\right)=\underline{\underline{f_{3}\left(\frac{\mu}{\rho V D}\right)}}$

Crelgurer risi
屋 H
 آوريد و با استفاده از اين دادهى محدود، رابطهى صريح برایى دبى بهدست آوريد.
 متغيرها و مراحل حذف ابعاد اصلى بهصورت زير درمى آيد [بخش (ب) [ب-Y-ケ)]:

$$
\begin{align*}
& Q=f(H, g, \theta) \quad ; \quad Q \doteq L^{3} T^{-1} ; \quad H \doteq L \quad ; \quad g \doteq L T^{-2} ; \quad \theta \doteq F^{0} L^{0} T^{0} \\
& \left\{\begin{array}{l}
H \doteq L \\
g \doteq L T^{-2}
\end{array} ;\left\{\begin{array}{l}
L=H \\
T=\sqrt{L g^{-1}}=\sqrt{H g^{-1}} ; \quad Q \doteq L^{3} T^{-1}=H\left(\sqrt{H g^{-1}}\right)^{-1}=H^{5 / 2} g^{1 / 2} \\
\left\{\begin{array}{l}
\Pi_{1}=\frac{Q}{\sqrt{g H^{5}}} ;
\end{array} ; \frac{Q}{\sqrt{g H^{5}}}=f(\theta)=\operatorname{Ctg} \frac{\theta}{2}\right. \\
\Pi_{2}=\theta
\end{array}\right.\right.
\end{align*}
$$

مقدار ضريب ثابت C از تنها دادمى موجود بهدست آمده و از آنجا رابطهى (1) بهصورت زير درمى آيد:

$$
C=\frac{Q}{\operatorname{tg} \frac{\theta}{2} \sqrt{g H^{5}}}=\frac{0.068 \mathrm{~m}^{3} / \mathrm{s}}{\operatorname{tg}\left(\frac{90^{\circ}}{2}\right) \sqrt{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.3 \mathrm{~m})^{5}}}=0.44 \quad ; \quad Q=0.44 \operatorname{tg} \frac{\theta}{2} \sqrt{g H^{5}}
$$

- 1-9

 در نمونهى اصل m m ז/

با استفاده از صورت مسأله و جلدول (1-1) فصل اول، ابعاد متغيرها بيصورت زير بهدست مىآيد: $\tau_{w}=f(D, Q, \mu, \rho) \quad ; \quad \tau_{w} \doteq F L^{-2} \quad ; \quad D \doteq L \quad ; \quad Q \doteq L^{3} T^{-1} \quad ; \quad \rho \doteq F L^{-4} T^{2} \quad ; \quad \mu \doteq F L^{-2} T$

$F: \underbrace{\frac{\tau_{w}}{\rho}}_{L^{2} T^{2}}=f_{1}(\underbrace{D}_{L}, \underbrace{Q}_{L^{3} T^{-1}}, \underbrace{\frac{\mu}{\rho}}_{L^{2} T^{-1}}) ; \quad \underbrace{\frac{\tau_{w}}{\rho D^{2}}}_{T^{2}}=f_{2}(\underbrace{\frac{Q}{D^{3}}}_{T^{-1}}, \underbrace{\frac{\mu}{\rho D^{2}}}_{T^{-1}})$
$T: \frac{\tau_{w}}{\rho D^{2}}\left(\frac{D^{3}}{Q}\right)^{2}=f_{3}\left[\frac{Q}{D^{3}}\left(\frac{D^{3}}{Q}\right), \frac{\mu}{\rho D^{2}}\left(\frac{D^{3}}{Q}\right)\right] \quad ; \quad \frac{\tau_{w} D^{4}}{\rho Q^{2}}=f^{\prime}\left(\frac{\nu D}{Q}\right)$
بنابر اصل شيبسازى، تشابه متغير بىبعد دوم از رابطهى (1) در مدل و نمونهى اصل بهصورت زير درمى آيد: $\left(\frac{v D}{Q}\right)_{m}=\left(\frac{v D}{Q}\right)_{p} \quad ; \quad \frac{Q_{m}}{Q_{p}}=\frac{D_{m}}{D_{p}} \frac{v_{m}}{v_{p}}=\frac{D_{m}}{D_{p}}$
 رابطهى (1) در مدل و نمونهى اصل بهصورت زير درمى آيد:

$$
\begin{aligned}
& \left(\frac{\tau_{w} D^{4}}{\rho Q^{2}}\right)_{m}=\left(\frac{\tau_{w} D^{4}}{\rho Q^{2}}\right)_{p} \quad ; \quad \tau_{w_{p}}=\tau_{w_{m}}\left(\frac{D_{m}}{D_{p}}\right)^{4}\left(\frac{Q_{p}}{Q_{m}}\right)^{2}\left(\frac{\rho_{p}}{\rho_{m}}\right)=\tau_{w_{m}}\left(\frac{D_{m}}{D_{p}}\right)^{4}\left(\frac{D_{p}}{D_{m}}\right)^{2}\left(\frac{\rho_{p}}{\rho_{m}}\right) \\
& \tau_{w_{p}}=\tau_{w_{m}}\left(\frac{D_{m}}{D_{p}}\right)^{2}\left(\frac{\rho_{p}}{\rho_{m}}\right)=\tau_{w_{p}}(0.17 \mathrm{~Pa})\left[\frac{(0.2 m)}{(0.3 m)}\right]^{2}(1) \quad ; \quad \tau_{w_{p}}=0.076 \mathrm{~Pa}
\end{aligned}
$$

$$
\begin{aligned}
& \text { S S S }
\end{aligned}
$$

> 2ماى $10^{\circ} \mathrm{C}$ لزجت آن بـتر تيب برابر
> تطر مورد نياز لولك در مدل با استفاده از تشابه عدد رينولدز [رابطهى (9-19)] بهصورت زير بهدست مى آيد:
> $\frac{V_{m}}{V_{p}}=\left(\frac{\mu_{m}}{\mu_{p}}\right)\left(\frac{\rho_{p}}{\rho_{m}}\right)\left(\frac{D_{p}}{D_{m}}\right) \quad ; \quad D_{m}=\left(\frac{V_{p}}{V_{m}}\right)\left(\frac{\mu_{m}}{\mu_{p}}\right)\left(\frac{\rho_{p}}{\rho_{m}}\right) D_{p}$
> $D_{m}=\frac{(4 m / s)}{(2 m / s)} \frac{(0.000018 \text { Pa.s) }}{(1.5 \text { Pa.s })} \frac{\left(1260 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(1.23 \mathrm{~kg} / \mathrm{m}^{3}\right)}(150 \mathrm{~mm}) \quad ; \quad \underline{\underline{D_{m}=3.7 \mathrm{~mm}}}$

دريا را

$$
\begin{aligned}
& \frac{T_{p}}{T_{m}}=\frac{F_{D_{p} \ell p}}{F_{D_{m}} \ell_{m}}=\left(\frac{\rho_{p}}{\rho_{m}}\right)\left(\frac{v_{p}}{v_{m}}\right)^{2} \frac{\ell_{p}}{\ell_{m}} ; \quad T_{p}=\frac{F_{D_{p} \ell_{p}}}{F_{D_{m} \ell_{m}}}=\left(\frac{\rho_{p}}{\rho_{m}}\right)\left(\frac{v_{p}}{v_{m}}\right)^{2} \frac{1}{L_{r}} T_{m} \\
& T_{p}=\frac{\left(1026 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(998.2 \mathrm{~kg} / \mathrm{m}^{3}\right)} \frac{\left(1.2 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)^{2}}{\left(1.004 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)^{2}} \frac{1}{(1 / 60)}(2 \mathrm{~N} . \mathrm{m}) \quad ; \quad \underline{\underline{T_{p}}=176.2 \mathrm{~N} . \mathrm{m}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{v_{m}}{v_{p}}=\sqrt{\frac{l m}{l p}}=\frac{t m}{t p} \times \frac{x_{m}}{\ell_{p p}}=\frac{v_{m}}{v_{p}} \quad F_{r_{p}}=\frac{v_{p}}{\sqrt{\text { yplp}}}-F_{r_{m}} \frac{V_{0}-Y}{=}
\end{aligned}
$$

