$$
\begin{array}{ll}
\sum \delta F=\delta m \vec{a} & \delta \overrightarrow{F_{\rho}}-\delta w k=(\rho \forall) \vec{a} \\
-\nabla \rho A-\gamma \forall \hat{k}=\rho \forall \vec{a} & \Rightarrow-\nabla \rho-\gamma \hat{k}=\rho a
\end{array}
$$

$$
\begin{aligned}
& P=\left(\rho_{\text {bloed }} g\right) h_{\text {blood }}=(\rho H g g) h_{\text {Hg }} \\
& \Rightarrow h_{\text {blood }}=\frac{\rho_{\text {Hg }}}{\rho_{\text {(blood) }}} h_{\text {Hg }}=\frac{13600 \mathrm{~kg} / \mathrm{m}^{3}}{1050 \mathrm{~kg} / \mathrm{m}^{3}}(0.12 \mathrm{~m})=1.55 \mathrm{~m}
\end{aligned}
$$

(2-12)
information: Height::0 $h=100 \mathrm{~m} \quad \rho=1000\left[1+\frac{z}{500}+\left(\frac{z}{100 .}\right)^{2}\right]$

$$
\begin{aligned}
P_{\text {Clo.r }}-P_{\text {Tr.p }} & =\gamma h=\left\{d p=1000\left[1+\frac{z}{500}+\frac{z^{2}}{10}\right] \times 10 d z\right. \\
d p=\gamma d h & =0 \\
P_{1}-P_{2} & =\Delta p=\int_{0}^{100}\left(1000+2 z+\frac{z^{2}}{1000}\right] d z \cdot\left(10^{5}+2 \times 10^{2}+10\right] \times 10 \\
& \approx \text { no using calculator 11 } \quad
\end{aligned}
$$

${ }^{-1}$ - P

$$
\begin{aligned}
& \left.P_{A}-\gamma_{g h} \times 0.5-(\gamma h)\right)_{0}+(\gamma h)\left(\gamma_{0}\right) \times 0.5=P_{B} \\
& 195-101.47-133 \times 0.5+12.4 \times 0.5=P_{B} \Rightarrow P_{B}=33
\end{aligned}
$$

 بمستت بالا حركت كنيم، مقدار hh كاسته مىشود. لذا خانواهيم داشت:

$$
\begin{equation*}
p_{A}+\gamma_{w}(a)+\gamma_{H_{g}}(2 a)-\gamma_{w}(a)=p_{B} \tag{1}
\end{equation*}
$$

با جايگزينى جگالى جيوه برابر بهدـت مى آبد:

$$
a=\frac{p_{B}-p_{A}}{2 \gamma_{H g}}=\frac{\left(20 \mathrm{kN} / \mathrm{m}^{2}\right)}{2(13.6)\left(9.81 \mathrm{kN} / \mathrm{m}^{3}\right)}=\underline{\underline{0.075 \mathrm{~m}}} \quad ; \quad \sin \theta=\frac{2 a}{(0.268 \mathrm{~m})}=\frac{2(0.075 \mathrm{~m})}{0.268 \mathrm{~m}}=0.56 \quad ; \quad \theta=34^{\circ}
$$

فشار بر روى سطح (1-1) كه با خط جِن نشان داده شـده است، در دو لولهى فشّارسنج لولهاى يكــان است. لذا خواهيم داشـت :

$$
p_{1-1}=(0.13 m) \gamma_{w}=(0.18 m) \gamma_{F} \quad ; \quad \gamma_{F}=\frac{(0.13 m) \gamma_{w}}{(0.18 m)}=\frac{(0.13 m)\left(9810 \mathrm{~N} / \mathrm{m}^{3}\right)}{(0.18 m)}=\underline{\underline{7085} \mathrm{~N} / \mathrm{m}^{3}}
$$

 To v ان انـ $\boldsymbol{p}_{g a s}+\boldsymbol{h} \gamma_{g a s}-\boldsymbol{h} \gamma_{\boldsymbol{H g}}=0 \quad ; \quad \boldsymbol{p}_{\text {gas }}+\overbrace{\boldsymbol{h}\left(\gamma_{g a s}\right)}^{=0}-\boldsymbol{h}\left(S G_{H g} \gamma_{w}\right)=0 \quad ; \quad(80000 \mathrm{~Pa})-\boldsymbol{h}\left[(13.6)\left(9810 \mathrm{~N} / \mathrm{m}^{3}\right)\right]=0$ $\underline{\underline{h=0.6 \quad m}}$

 سمت جب به طرف مخزن سمت راست حر كت كـيم، رابطهى زير بهدست مى آبد:

$$
\begin{equation*}
p_{1}+\gamma_{1}\left(h_{1}+h-\Delta h\right)-\gamma_{2} h-\gamma_{1}\left(h_{1}+\Delta h\right)=p_{2} \quad ; \quad p_{1}-p_{2}=h\left(\gamma_{2}-\gamma_{1}\right)+\gamma_{1}(2 \Delta h) \tag{1}
\end{equation*}
$$ از طرفى، حجم مايع جابهجا شده در مخزن و لولههاى فــار سنج لولهاى بايستى يكــان باشد، و لذا خواهيم داشـت : $\Delta h A_{r}=\frac{h}{2} A_{t} \quad ; \quad \frac{2 \Delta h}{h}=\frac{A_{t}}{A_{r}}$

$$
\boldsymbol{p}_{1}-\boldsymbol{p}_{2}=\boldsymbol{h}\left(\gamma_{2}-\gamma_{1}\right) \quad ; \quad \underline{\underline{h}=\frac{\boldsymbol{p}_{1}-\boldsymbol{p}_{2}}{\gamma_{2}-\gamma_{1}}}
$$

مقادير نيروماى ور F, و و و از آنجا نيروى برايند بهصورت زير بددست مى آيد:

$$
F_{1}=\frac{1}{2} \gamma_{\text {oil }} h^{2} b=\frac{1}{2} \gamma_{\text {oil }}(2 m)^{2}(5 m)=10 \gamma_{\text {oil }}=10\left[\left(800 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\right] \quad ; \quad F_{1}=78480 \mathrm{~N}
$$

$$
F_{2}=\frac{1}{2} \gamma_{w} h^{2} b=\frac{1}{2} \gamma_{w}(1 m)^{2}(5 m)=2.5 \gamma_{w}=2.5\left(9810 \mathrm{~N} / \mathrm{m}^{3}\right) \quad ; \quad F_{2}=24525 \mathrm{~N}
$$

$$
F_{R}=F_{1}-F_{2}=(78480 N)-(24525 \mathrm{~N}) \quad ; \quad F_{R}=53955 \mathrm{~N}=54.0 \quad \mathrm{kN}
$$

 در ז/h از فاعده بيلث اثر مى كتند. بنابراين خواهـيم داشـت:

$$
y_{R_{1}}=\frac{2}{3} m \quad ; \quad y_{R_{2}}=\frac{1}{3} m
$$

$$
F_{1} y_{R_{1}}-F_{2} y_{R_{2}}=F_{R} y_{R} \quad ; \quad y_{R}=\frac{F_{1} y_{R_{1}}-F_{2} y_{R_{2}}}{F_{R}}=\frac{(78480 N)(2 / 3 m)-(24525 N)(1 / 3 m)}{(53955 N)}=\underline{\underline{0.82 \mathrm{~m}} \mathrm{~m}}
$$

$$
\begin{aligned}
& F_{R_{1}}=\gamma(a h)\left(h+\frac{h}{2}\right)=\frac{3}{2} \gamma a h^{2} \quad ; \quad y_{R_{1}}=\frac{I_{x c}}{h_{c_{1}} A}+h_{c_{1}}=\frac{\left(a h^{3} / 12\right)}{(a h)(h+h / 2)}+\left(h+\frac{h}{2}\right)=\frac{14}{9} h \\
& \text { نيروى برايند و محل مر كز فــار قـــت مثلثى ويكل نيز بهصورت زير بهدست مى آيد: } \\
& F_{2}=\gamma\left(\frac{a h}{2}\right)\left(h+\frac{2 h}{3}\right)=\frac{5}{6} \gamma a h^{2} \quad ; \quad h_{R_{2}}=\frac{I_{x c}}{h_{c_{2}} A}+h_{c_{2}}=\frac{\left(a h^{3} / 36\right)}{(a h / 2)(h+2 h / 3)}+\left(h+\frac{2 h}{3}\right)=\frac{51}{30} h
\end{aligned}
$$

$F_{R}=F_{R_{1}}+F_{R_{2}}=\frac{3}{2} \gamma a h^{2}+\frac{5}{6} \gamma a h^{2}=\underline{\underline{\frac{7}{3}} \gamma a h^{2}}$
مركز فشار وارد بر صفحهى ذوزنتهاى سُكل، بهصورت زير بددست مى آيد:
$h_{c}=\frac{F_{R_{1}} h_{c_{1}}+F_{R_{2}} h_{c_{2}}}{F_{R}}=\frac{\left[\left(3 / 2 \gamma a h^{2}\right)(14 / 9 h)\right]\left[\left(5 / 6 \gamma a h^{2}\right)(51 / 30 h)\right]}{7 / 3 \gamma a h^{2}}=\frac{45}{\underline{28}} h$
"Question number".

$$
\| 2-56)
$$

"Rnswer),

$C+\Sigma m_{R}=\cdot$
$1 F_{1}=1 / \gamma^{2} b=\frac{1}{2} \gamma H^{2} b$

$$
{ }^{2} f_{z}=\gamma H(4 b)=4 \gamma H b
$$

* $\quad x_{1}=2$
\& $\quad x_{1}=2$

 تصورير عمودى دريجه، مستطبلى به ابعاد D $\boldsymbol{V} \quad \mathrm{F} \quad \boldsymbol{F}_{\boldsymbol{V}}=\gamma A h_{c} \quad ; \quad F_{H}=\left(9810 \mathrm{~N} / \boldsymbol{m}^{3}\right)[(2 \boldsymbol{m})(2 \boldsymbol{m})]\left(3 \boldsymbol{m}+\frac{2}{2} \boldsymbol{m}\right) \quad ; \quad \underline{\underline{F_{H}=156960 \quad \mathrm{~N}}}$

$$
\begin{aligned}
& F_{V}=\gamma\left(\forall_{A B C D E}\right) \quad ; \quad F_{V}=\gamma\left(F_{V 1}+F_{V 2}\right) \quad ; \quad F_{V}=\gamma\left(\forall_{A B E}+\forall_{B C D E}\right) \\
& F_{V}=\left(9810 N / m^{3}\right)\left[\left[\frac{\pi}{4}(2 \boldsymbol{m})^{2}(2 \boldsymbol{m})\right]+(3 m)(2 m)(2 \boldsymbol{m})\right] ; \quad F_{V}=179358 N
\end{aligned}
$$

باتوجه به اينكه نروى برايند وارد بر دريجه از مر كز دريجه مى گذرد، گششتاور آن حول مركز دريجه صفر مىباشبد. بتابراين، نيروى كشش كابل برابر صفر خواهد بود.

$$
\begin{aligned}
& \gamma h_{e q}=14 \mathrm{kPa} \Rightarrow \Delta \times 10^{r} h_{e q}=14 \times 10^{\circ} \\
& \left(r_{0}-r\right. \\
& \Rightarrow h_{\text {eq }}=r_{m}=r_{00} \\
& F_{v}=\left(\nu_{1}+\nu_{r}+\nu_{c}\right) y_{i} \\
& \underset{T}{V}=(\Delta \times r \times 1)+\left(\frac{\pi}{r} \times \varepsilon \times 1\right)=1 r_{1} \varepsilon_{\varepsilon_{m}} \\
& F_{v}=\| \mu, 1 \varepsilon \times \Lambda \times\left.\right|_{0} ^{r}=10 \Delta, \pi K N \\
& \text { " }
\end{aligned}
$$

$$
\begin{aligned}
& x y_{1}=\frac{H}{3} \\
& 2 \times 4 \times N H \sigma=\frac{\pi}{3} \times \frac{1}{2} \times H^{2} b \\
& \text { Ry } \begin{array}{c}
\underset{x_{1}}{\longrightarrow} \\
\vdots F_{2}
\end{array} \quad\left(+\sum M_{R}=0\right. \\
& H=\sqrt{48} \mathrm{~m}=4 \sqrt{3} \mathrm{~m}=6.93 \mathrm{~m}
\end{aligned}
$$

$\vee \cdots \pi$	(r	
$i r \cdots \pi \pi$	(r	$0 \cdots \pi$

كزّ ينهى (F). باتوجه به اين كه هواى بالاى سطح آب تحت فــار است، ابتدا بايستى سطـح آزاد معـادل آب بهصورت زير بهدسـت آيـد:

كزينهى (ץ). در مورد اجسام شناور نيروى وزن جسم با نيروى شُناورى در حالت تعادل مىباشند:

$$
F_{B}=W \quad ; \quad\left(\rho_{w}\right)(2 L) A+\left(\rho_{w}\right)(x) A=(2 \rho) L A+\rho(2 L) A \quad ; \quad \rho=\frac{2 \rho_{w} L+\rho_{w} x}{4 L}
$$

كه در آن xار تفاع قسمتى از طول لوله به ارتفاع YL است كه در داخل آب قرار گرفته است. باتوجه به اين كه مقدار حداكتر x كـتر از است، لذا

كزينهى ((r). جنانجه مساحت ميله A باشد، جهت برقرارى تعادل، همواره گشتاور نيروى وزن و شناورى حول نقطهى A برابر خواهد بود: $F_{B}\left(\frac{L_{A C}}{2} \cos \alpha\right)=W\left(\frac{L_{A B}}{2} \cos \alpha\right) \quad ; \quad\left(\gamma_{w} A L_{A C}\right) L_{A C}=\left(\gamma_{c} A L_{A B}\right) L_{A B} \quad ; \quad L_{A C}^{2}=S G_{c} L_{A B}^{2}$

$\tan \theta=\frac{12}{20} \quad ; \quad \theta=30.96^{\circ} \quad: \quad d=2 y \tan \theta$
$F_{B}=\boldsymbol{W} \quad ; \quad \gamma_{w}\left(\frac{1}{3} \frac{\pi d^{2}}{4} y\right)=\left(S G \gamma_{w}\right)\left(\frac{1}{3} \frac{\pi D^{2}}{4} H\right) \quad ; \quad d^{2} y=S G D^{2} H$
$(2 y \tan \theta)^{2} y=S G(2 H \tan \theta)^{2} H \quad ; \quad y^{3}=S G H^{3} \quad ; \quad y=S G^{1 / 3} H=(0.8)^{1 / 3}(0.20 \mathrm{~m})=0.186 m$
 بهصورت زير بيدست بیى آبي:
$\overline{B G}=\overline{O G}-\overline{O B}=\left(\frac{3}{4} H\right)-\left(\frac{3}{4} y\right)=\frac{3}{4}[(0.20 m)-(0.186 m)] \quad ; \quad \overline{B G}=0.011 m$
فاصلهى يبن مركز ثقل و ارتفاع متاسنتريك از رابطهى (Y-Yاث) بهصرت زير بهدست میآيد:
$\overline{G M}=\overline{B M}-\overline{B G}=\frac{I}{\forall}-\overline{B G}=\frac{\left(\pi d^{4} / 64\right)}{1 / 3\left(\pi d^{2} / 4\right) y}-\overline{B G}=\frac{3}{16} \frac{d^{2}}{y}-\overline{B G}=\frac{3}{16} \frac{(2 y \tan \theta)^{2}}{y}-\overline{B G}$
$\overline{G M}=\frac{3}{4} \operatorname{ytan}^{2} \theta-\overline{B G}=\frac{3}{4}(0.186 m) \tan ^{2}\left(30.96^{\circ}\right)-(0.011 m) \quad ; \quad \overline{G M}=0.039 \mathrm{~m}$

:
اگر مبدأ مختصات در گوشهى Aانتخاب شود، براى .
$p=-\rho a_{y} y-\gamma z \quad ; \quad p=-\frac{\left(6600 \mathrm{~N} / \mathrm{m}^{3}\right)}{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\left(3 \mathrm{~m} / \mathrm{s}^{2}\right) y-\left(6600 \mathrm{~N} / \mathrm{m}^{3}\right) z \quad ; \quad p=-2018.4 y-6600 z$
(الف) در گرشهى بالاى جلو، B، مقدار .
$p=-2018.4(10 m)-6600(0) \quad ; \quad p=-20184 \quad P a$
(ب) مقدار حداكثر فشـار در گوشهى بايين عقب مخزن با استفاده از رابطهي (1) بهصورت زير بهدست مى آيد:

$$
p=-2018.4(0)-6600(-2 m) \quad ; \quad p=13200 \quad P a
$$

تزَينهى (ا). شيب سطح آب از رابطهى (ه- -) بهصورت زير بهدست مىآيد:

$$
\operatorname{tg} \theta=\frac{d z}{d y}=-\frac{a_{y}}{g+a_{z}} \quad ; \quad \frac{d z}{d y} \cong \frac{\Delta z}{\Delta y}=\frac{-h}{L}=-\frac{a}{g} \quad ; \quad h=\frac{a L}{g}
$$

$$
\begin{aligned}
P & =\frac{\rho w^{r} r e^{r}}{r}-\gamma_{2}+c \\
0 & =\frac{1 \times w^{r} \times 0, d^{r}}{r}-\gamma_{w}(0)+c \\
& \Rightarrow c=0, r \delta w^{r} \\
P & =\frac{\rho w^{r}}{r}\left(l^{r}-0, r \delta\right)-\gamma_{w}(0, \delta)=\frac{r}{\Lambda} \rho w^{r}+0, \partial \gamma_{w} \\
& \left.=\left(\frac{r}{\pi} w^{r}+0, \partial\right) \gamma_{w} \right\rvert\, \partial_{0}
\end{aligned}
$$

