1 Solve problems $\mathbf{4 9 0}(2,8,11,15,20,25)$ from the reference book.
2 Find the frequency and amplitude spectrum of the given functions.

$$
\begin{aligned}
& f(x)= \begin{cases}\pi & \langle-\pi<x<0\rangle \\
\pi-x & \langle 0 \leq x \leq \pi\rangle\end{cases} \\
& f(x)=x^{2} \quad\langle-\pi / 4<x<\pi / 4\rangle
\end{aligned}
$$

3 Write the complex Fourier series, determine the sum of the series, and plot some points of the frequency spectrum for the given functions.

$$
\begin{aligned}
& f(x)=2 x \quad\langle-\pi<x<\pi, \text { period } 3\rangle \\
& f(x)=x^{2} \quad\langle-\pi<x<\pi, \text { period } 2\rangle
\end{aligned}
$$

4 In each of the given problems, graph the function, the fifth partial sum of the Fourier series on the interval, and the fifth Cesáro sum, using the same set of axes.

$$
\begin{aligned}
& f(t)= \begin{cases}1 & \langle 0 \leq x<2\rangle \\
-1 & \langle-2 \leq x<0\rangle\end{cases} \\
& f(t)= \begin{cases}0 & \langle-3 \leq x<0\rangle \\
\cos x & \langle 0 \leq x<3\rangle\end{cases}
\end{aligned}
$$

